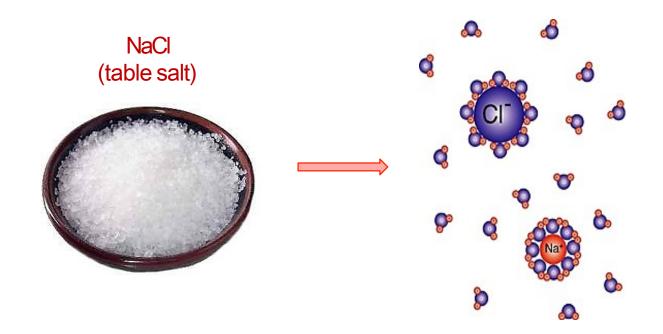
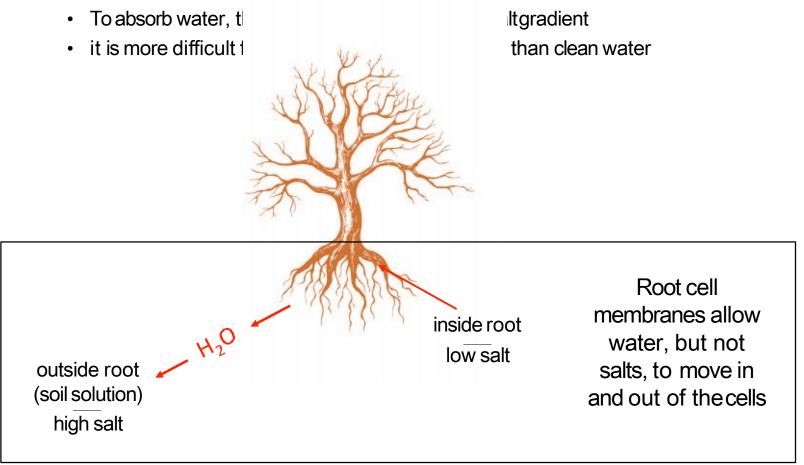
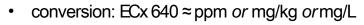
Managing Salinity in Pecan Orchards -Irrigation Water

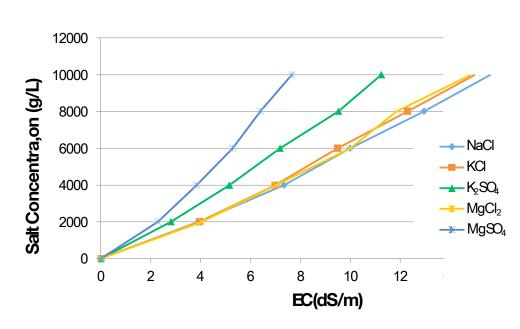

Dr. Jim Walworth Dept. Soil, Water and Environmental Science University of Arizona

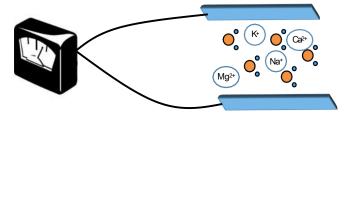
Symptoms of salt damage in pecans include marginal leaf necrosis, eventual necrosis of entire leaves and tree defoliation

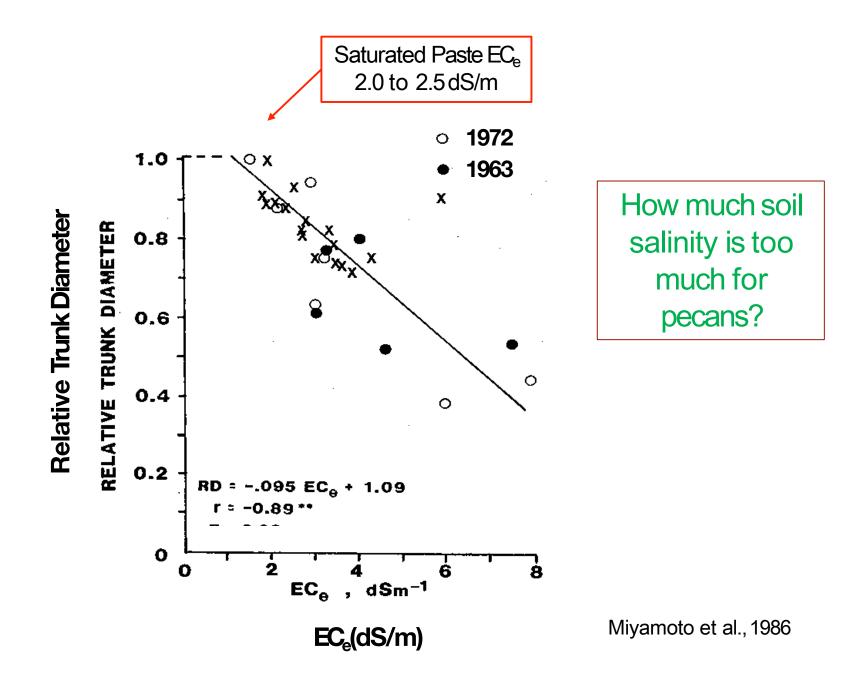

Dissolved salt molecules artifact water molecules

- Water molecules cluster around salt molecules
- This restricts the ability of the water molecules to move around freely
 - It lowers the water's osmotic potential and biological availability
- Salts make soil water less available to plants

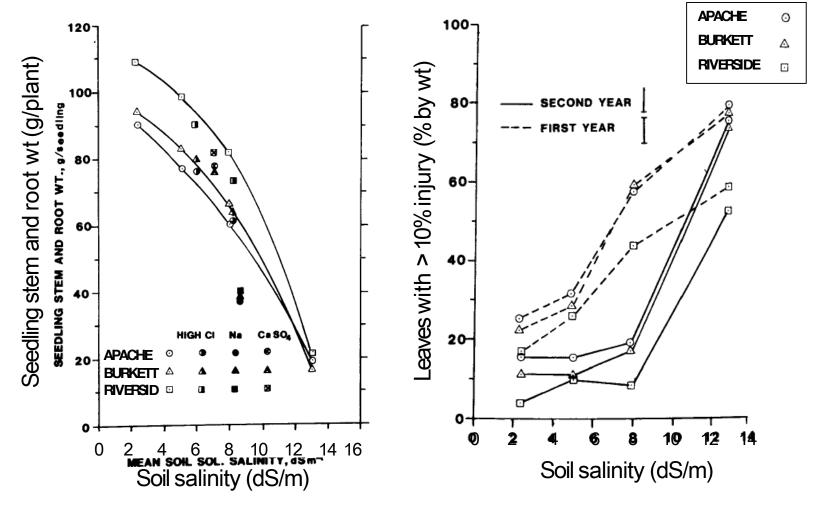

Effect of Salts on Plants


 Water is drawn away from regions of low salt concentration (inside the root) and towards regions of high salt concentration (outside the root)




Measuring Salinity: Electrical Conductivity

- Salt ions dissolved in water conduct electricity
- The total amount of soluble soil salts is estimated by measuring the electrical conductivity (EC) of water
 - ECis measured in units of conductance over a given distance
 - deci-Siemens per meter (dS/m)
 - older units are mmhos/cm, identical to dS/m



Salinity tolerance varies among pecan cultivars, but we lack data for most cultivars

Miyamoto et al., 1985

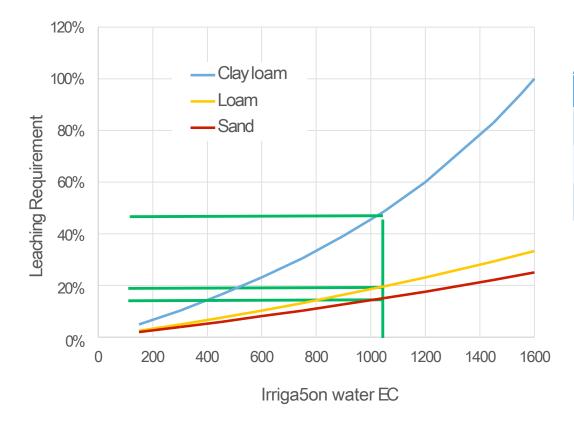
Irrigation water is the major source of salts in most irrigated soils

Annual salt addition

Salt in irrigation water (ppm)	Salt added to orchard (tons/ac)
200	1.1
400	2.2
600	3.2
800	4.3
1000	5.4
1200	6.5
1400	7.6
1600	8.6
2000	10.8

Assumes 4 acre-feet of water per year

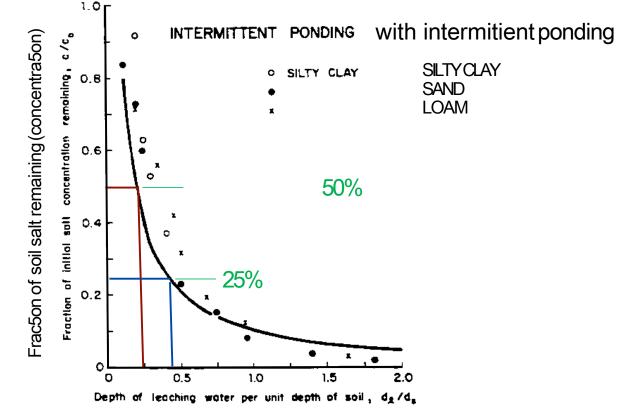
Irrigation Water Salinity Guidelines for Pecans


Soil Texture	Salini	ty limit
	EC(dS/m)	mg/L (ppm)
Clay, clay loam	< 1.0	< 640
Loam	1.0 – 2.0	640 -1280
Sand, loamy sand	2.0 – 2.5	1280 -1600
ţ.		

Salinity tolerance is lower in clayey soils than in sandier soils because it is more difficult to leach salts from clay soils

Leaching to Maintain Low Soil Salts

The leaching requirement (LR) is the excess water (beyond tree needs) that must be applied to keep salts at a level that will not reduce yield


- LRincreases as irriga5on water salinity increases
- LRincreases as soil clay content increases

LRfor 1000 ppm water

Soil texture	LR
clay, clay loam	45%
loam	19–45%
sand, loamy sand	14 – 19%

Leaching Required to Reclaim Saline Soil

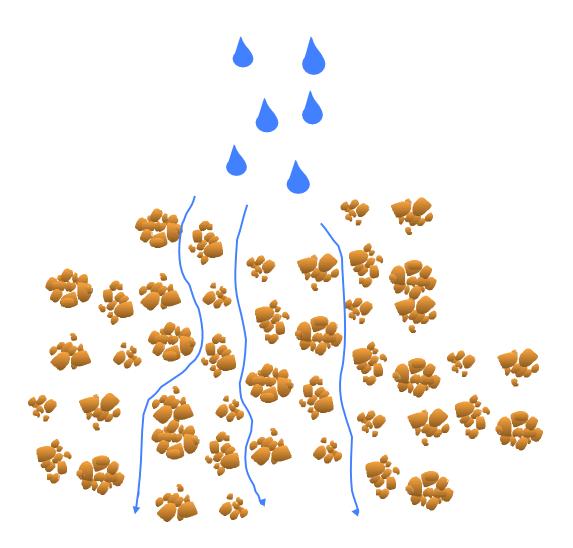
Depth of leaching water per depth of soil (n H₂O/n soil)

To reduce the salinity in by ½, apply approximately 0.23 n of irrigation water per n of root zone To reduce salinity to ¼ of the original value, apply approximately 0.44 n of water per n of soil

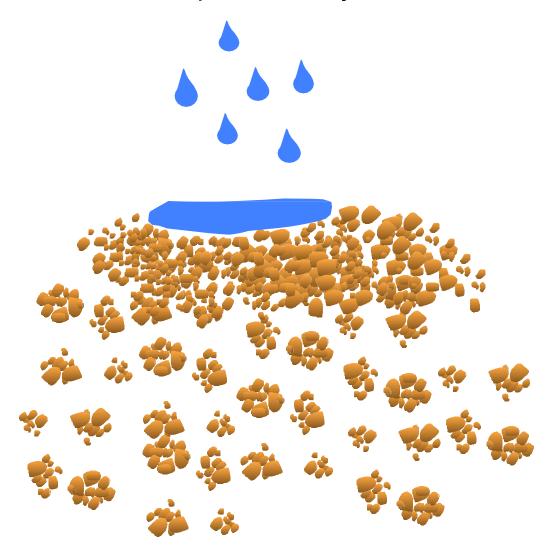
(from Hoffman, 1980)

Salt and sodium related water quality parameters

Water quality test	What the test measures	Effect of chemical property on soil
рН	Alkalinity/acidity balance	Not directly important to trees. Very high pH water (> 8.4) may contain sodium that can damage soil structure.
Electrical Conductivity (EC)	Dissolved salts	Increased salt concentration in water helps maintain soil structure, but may damage plants.
Sodium Adsorption Ratio (SAR)	Relative concentrations of sodium, calcium, and magnesium	The higher the SAR, the greater the risk of damaging soil structure.
Residual sodium carbonate (RSC)	Carbonate anions minus calcium and magnesium	When RSC is positive, calcium is lost from the soil solution when it combines with carbonates, increasing sodium hazard.


Units for water test parameters

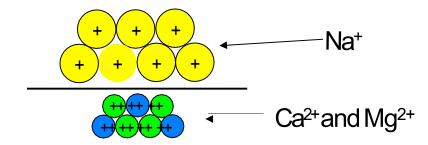
Water Property		Symbol	Units
Total calinity	Electrical Conductivity	EC	dS/m or mmhos/cm
Total salinity	Total Dissolved Solids	TDS	mg/L or ppm
Sodium Hazard	Sodium Adsorption Ratio	SAR	-
	calcium	Ca	
Ostara	magnesium	Mg	
Cations	sodium	Na	
	potassium	K	
	boron	BO ₃	meq/
	bicarbonate	HCO ₃	L or
Anions	carbonate	CO_3	ppm (same as mg/L)
	chloride	Cl	
	nitrate	NO ₃	
	sulfate	SO ₄	


Some useful conversions

Water Property	Symbol	Conversion	
Electrical Conductivity	EC	$EC(dS/m) \times 640 - TDS(nnm)$	
Total Dissolved Solids	TDS	$EC(dS/m) \times 640 = TDS(ppm)$	
Sodium Adsorption Ratio	SAR	Calculated from Na, Ca, Mg concentrations	
Calcium	Ca	ppm ÷ 20 = meq/L	
Magnesium	Mg	ppm ÷ 12.2 = meq/L	
Potassium	K	ppm ÷ 39.1 = meq/L	
Sodium	Na	ppm ÷ 23 = meq/L	
Borate	BO_3	ppm ÷ 19.6 = meq/L	
Bicarbonate	HCO ₃	ppm ÷ 61 = meq/L	
Carbonate	CO_3	ppm ÷ 30 = meq/L	
Chloride	Cl	ppm ÷ 35.5 = meq/L	
Nitrate	NO ₃	ppm ÷ 62 = meq/L	
Sulfate	SO ₄	ppm ÷ 48 = meq/L	

Aggregate formation and stability are important because water and air move mostly in large pores between aggregates. Also, plant roots grow through the large spaces between aggregates.

In all but the sandiest soils, dispersed (unaggregated) clays plug soil pores and impede water infiltration and soil drainage. High sodium levels tend to disperse soil clays.

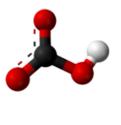

Typical soil infiltration rates are affected by sodium

Soil Texture	Infiltration Rate (in/hr)
Sand	2
Sandy loam	1
Loam	0.5
Clay loam	0.25
Sandy clay loam	0.10

Soils with high Sodium Adsorption Ration and poor soil structure will likely have infiltration rates much slower than those shown here

Sodium Adsorption Ratio

The ratio of 'weak' to 'strong' soil aggregators gives an indication of the likelihood of soil dispersion:

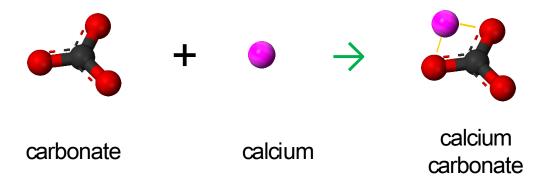


Acceptable irrigation water SAR is affected by irrigation water salinity (EC) levels

- Higher SAR values are acceptable if the water is salty (high EC)
- Low EC waters are more sensitive to high SAR

	Risk of v	Risk of water infiltra, on problem		
	Low	Moderate	High	
SAR	ECof wa	ater (dS/m ormmh	nho/cm)	
0 -3	above 0.7	0.7 – 0.2	below 0.2	
3-6	above 1.2	1.2 – 0.3	below 0.3	
6 -12	above 1.9	1.9 – 0.5	below 0.5	
12 –20	above 2.9	2.9 – 1.3	below 1.3	
20 - 40	above 5.0	5.9 – 2.9	below 2.9	

Carbonates and Bicarbonates in irrigation water



bicarbonate

carbonate

Carbonate and bicarbonate can combine with calcium, forming insoluble calcium carbonate, and taking calcium out of solution

Residual sodium carbonate is a measure of the potential of carbonates and bicarbonates in irrigation water to tie up calcium

Residual Sodium Carbonate= (bicarbonate+carbonate)-(calcium+magnesium) $RSC= (HCO\downarrow3 + CO\downarrow3)-(Ca+Mg)$ units = meq/L

Residual sodium carbonate hazard in irrigation water

	None	Slight to Moderat e	Severe
RSC	< 1.25	1.25 – 2.5	> 2.5

Acid Injection

- Lower water pH
 - Target pH 7.0 or below
 - For concrete-lined ditches: 6.8 -7.0
 - For drip, microsprinklers: 6.5
- Amount of acid to add can be found in tables:

Bicarbonate in water	Sulfuric acid required per acre-inchof water (additional acid is required for water containing carbonate)		
(mg/L or ppm)	(meq/L)	(lb)	(gal)
50	0.8	8.6	0.6
100	1.6	17.2	1.1
200	3.3	34.3	2.3
400	6.6	68.7	4.6

or calculated: AxBxC=oz acid per 1,000 gallons water to lower pH to 6.4

A is determined by starting pH

Water pH	Α
6.7	0.249
6.9	0.342
7.1	0.400
7.3	0.437
7.5	0.460
7.7	0.475
7.9	0.484
8.1	0.490
8.3	0.494
8.5	0.496

Bis the sum of carbonate and bicarbonate (in meq/L)

Cis determined by the type of acid used

Acid source	С
75% phosphoric	10.60
85% phosphoric	8.74
93% sulfuric	3.72
61% nitric	15.60

Example:

- Starting water pH = 7.5
- Carbonate + bicarbonate = 3.4 meq/L
- Using 75% phosphoric acid

0.460 x 3.4 x 10.6 = add 16.5 oz/1000 gal water

or with an online calculator

http://extension.unh.edu/Agric/AGGHFL/alk_calc.cfm

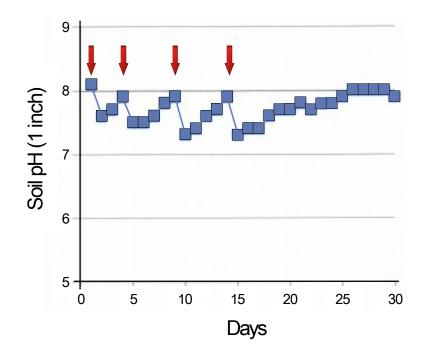
Cooperati	ty of New Hampshire 🕼 Counties 🕒 Publications 📾 Events ve Extension a Google Custom S
4-H Youth & Family Ag Greenhouse and Floriculture	riculture Business Community Food & Health Gardens & Landscapes Natural Resources Volunteer About Alkalinity Calculator
Grower Tools	ALKCALC
Plant Nutrition	
Media Testing	
Integrated Pest Management (IPM)	Calculation Form Cost Comparison of Acids Safe Use of Acid
Plant Diagnostic Lab	
Sustainability	Instructions
Energy Audits	
University Links	This calculator provides the recommendations for the amount of acid to add to irrigation water in order to modify the pH and alkalinity le addition, the calculator provides the amount of added phosphorus, nitrogen, and sulfur that the corresponding acids will provide, plus ar
Association Links	economic comparison of each acid.
News and Views	
Our Staff	Calculation Form UA UA Your Name: Jim Walworth
Education Center and Info Line	The pH of your sample:
NH Agricultural	Acid: Phosphoric Acid (75%) 🔻

Input Variables						
Company Name:	UA	Your Name:	Jim Walworth			
Sample pH:	7.5	Sample alkalinity:	3.4 meq/L			
Target alkalinity or pH:	6.4 pH	Acid:	Phosphoric Acid (75%)			

Calculated Information				
Alkalinity before acid add	lition:	Alkalinity after acid additi	ion:	
meq/L:	3.40	meq/L:	1.90	
or ppm of HCO3:	207.5	ppm of HCO3:	116.2	
or ppm of CaCO3:	170.2	ppm of CaCO3:	95.3	
		Final pH:	6.40	

s to Add to Irrigation Water		
	Phosphoric Acid	
Amounts	(75%)	
For Small Volumes		
ml per liter	0.115	
fl. oz. per gallon	0.015	
ml per gallon	0.434	
For a 1:100 Injector		
fl. oz. per gallon (conc.)	1.47	
ml per gallon (conc)	43.35	
For a 1:128 Injector		
fl. oz. per gallon (conc.)	1.88	
ml per gallon (conc)	55.49	
For a 1:200 Injector		
fl. oz. per gallon (conc.)	2.93	

Sulfur Burners – alternative to acid injection


Sulfur + $O_2 \rightarrow H_2SO_3$ (sulfurous acid)

- Elemental sulfur is combusted, forms sulfurous acid
 - Sulfurous acid is injected directly into irrigation water
 - Safer than handling sulfuric acid
 - Sulfurous acid is a weak acid sulfuric acid is a strong acid

Sulfur combustion S+ $O_2 \rightarrow SO_2$

Water reaction SO₂+ H₂O \rightarrow H₂SO₃ Acid injection is used to adjust irrigation water, not to lower soil pH

Effect of repeated liquid sulfuric acid applications on the pH of the surface inch of soil. Acid was applied four times (Day 1, 4, 9, and 14). Soil pH reduction is temporary – acid injection is used to lower SAR.

Gypsum Injection

Gypsum (CaSO₄·2H₂O)

- Can be used to increase calcium concentration in irrigation water (alternative to acidifying)
- Soil applied or injected into irrigation water

Irrigation Water Boron: Desirable Range					
	Clay, clay loam	< 0.5			
Boron	Loam	0.5 – 1.0			
	Sand, loamy sand	1 – 1.5			

Water treatment methods and their applicability

	Total Dissolv ed Solids	Bicarbona te & Carbonate	Calciu m & Magnesium	Iro n & Manganese	Boron	Fluoride
Reverse osmosis	Х	Х	Х	Х	Х	Х
Deionization	Х	Х	Х	Х	Х	Х
Anion exchange		Х			Х	Х
Water sonening			Х	Х		
Activated carbon						
Acid injection		Х				

Things that should be on your irrigation water report

Ca,ons	5	Anion	S	Other	
Calcium	Ca ²⁺	Chloride	Cŀ	Total Dissolved Solids or Electrical Conductivity	TDSor EC
Magnesium	Mg ²⁺	Boron	BO ₃ 3-	Residual Sodium Carbonate	RSC*
Sodium	Na⁺	Carbonate	CO32-	Sodium Adsorption Ratio	SAR*
Potassium	K+	Bicarbonate	HCO <u>3</u>	Acidity/Alkalinity	pН
		Sulfate	SO4		
		Nitrate	NO <u>3</u>		

*Calculated from concentrations of anions and cations in the water

Isn't there an easier way?

(No, there isn't)

