### Managing P and K

Michael Smith Oklahoma State University



### Phosphorus or Potassium Deficiency





#### K and P distribution

mid-season (July); initial shuck split (Oct) and leaf fall (Nov)

| Plant            | K (% of total) |      |      | P (% of total) |      |      |
|------------------|----------------|------|------|----------------|------|------|
| part             | July           | Oct  | Nov  | July           | Oct  | Nov  |
| Fruit            | 0.4            | 8.1  |      | 0.4            | 2.1  |      |
| Leaves           | 19.3           | 10.5 | 9.4  | 17.0           | 12.8 | 5.5  |
| Trunk &<br>limbs | 45.3           | 40.4 | 38.1 | 35.3           | 29.5 | 45.9 |
| Roots            | 35.0           | 40.9 | 52.5 | 47.3           | 35.1 | 48.7 |

\*\*Movement of K is primarily to the shuck – rapid transport in July and August. Involved in sugar transport and shuck opening.

\*\*Movement of P is primarily to the kernel – rapid transport in late August through shuck split. Constituent of nucleotides, phospholipids (oil synthesis), high-energy phosphate compounds and stored in the kernel.

\*\*Pecans loose substantial amounts of K and P in leaves at defoliation.



#### Phosphorus Availability





Lowell Busman, John Lamb, Gyles Randall, George Rehm, and Michael Schmitt. 2015. The nature of phosphorus in soils. Univ. of Minn. Extension.

## Extractable Phosphorus 6 months after application on a silt loam soil in Wisconsin



Midgley. 1931. J. Amer. Soc. Agron.

#### Potassium in soils

Unavailable K in primary minerals

Soil solution and exchangeable K, i.e. plant available

Slowly available K in small micas and clays



#### The Influence of Soil pH on Nutrient Availability

#### 12-year-old Pawnee trees bearing large crop



AGRICULTURE

#### Nitrogen Increases Symptoms





#### Increased P or K Decreased Symptoms





## Banded P and K annually on 1 side of tree over irrigation drip line

- Rate 260 lb/field acre  $P_2O_5$  applied as a band mid way between the trunk and canopy drip line, i.e. about 7 lb/tree
- Rate 140 lb/field acre K<sub>2</sub>O
- P and K were applied alone or together plus a control



Pdeficiency symptom in July



# Leaf symptoms after annual banding P & K

|         | Trees with any | Tree     | Tree     |
|---------|----------------|----------|----------|
|         | necrotic leaf  | necrosis | necrosis |
|         | symptoms       | rating   | rating   |
| Element | 29 Aug. 2009   | 4 Oct.   | 31 Aug.  |
| applied | (%)            | 2010     | 2012     |
| None    | 66             | 3.7a     | 4.0a     |
| Р       | 33             | 1.5b     | 1.7b     |
| Κ       | 100            | 3.3a     | 4.3a     |
| P + K   | 17             | 1.3b     | 1.5b     |

Symptoms appear closely linked to P shortage, even in July.



Rating

Rating 3

Rating 5

### 2011 1-year-old branches with fruit



#### Summary

- Banded P improved return bloom substantially and marginally improved kernel %
- Banded K improved kernel %
- Banding P and K together was effective in alleviating shortages.
- Either applied alone resulted in greater absorption than applied together.



#### Leaf P concentration

14-year-old 'Pawnee', All trees received same N rate, N-P-K applied dry in March, 28% N solution applied 4 times between 2 wk after budbreak to mid-June.

- Treatments
  - None
  - P on drip side
  - K on drip side
  - P& K on drip side
  - P& K on dry side
  - Pon drip side, K on dry side
  - K on drip side, Pon dry side
- 10 Replications
- Rates
  - 150 lb/a  $P_2O_5$  from 18-46-0
  - 150 lb/a K<sub>2</sub>O from 0-0-60
  - Balanced N with urea

- Results 2014 No differences
- P Results 2015, Leaf % DW
  - None vs P\*\*\*: 0.117 vs 0.124
  - P drip vs P dry<sup>NS</sup>: 0.125 vs 0.123
  - P& K together vs opposite sides of tree\*\*: 0.122 vs 0.127
  - P only vs P & K<sup>NS</sup>: 0.124 vs 0.124



#### Leaf P & K distribution in July following banding on 1 side in March with 9-24-24 at 400 lb/acre

| Application side | P %   | К %  |
|------------------|-------|------|
| No               | 0.122 | 0.77 |
| Yes              | 0.123 | 0.76 |



#### Effect of 400 lb/a 9-24-24 application time on leaf P & K concentration

| Time of<br>application | 2014  | 2015  |
|------------------------|-------|-------|
|                        | Р     | %     |
| Pre budbreak<br>March  | 0.122 | 0.135 |
| Water stage<br>August  | 0.123 | 0.133 |
|                        | K     | %     |
| Pre budbreak<br>March  | 0.77  | 0.91  |
| Water stage<br>August  | 0.75  | 0.92  |

Soil P (Ibs/acre) under the band or on the opposite of the tree. Trees banded for 5 years. Sample collection December.



■ 0-0.5" ■ 0.5-1" ■ 1-2" ■ 2-4" ■ 4-8" ■ 8-16"

Soil K (lbs/acre) under the band or on the opposite of the tree. Trees banded for 5 years. Sample collec:on December.



■ 0.-0.5" ■ 0.5-1" ■ 1-2" ■ 2-4" ■ 4-8" ■ 8-16"



#### Conclusions



- Target leaf concentrations are 0.14% P and 1.0% K.
  - When those concentrations are met the fertilizer can be withheld, except Desirable K target is 1.25%.
  - Maintaining a 6.2–7.0 pH benefits availability and uptake.
- P and K can be applied together with negligible affects on uptake.
- Por K should be applied on 1 side of the tree for maximum availability. Application should be to the same location annually.



- P or K applicaNon can be effective when applied pre budbreak and through the latter part of the growing season.
- Nut quality if very sensitive to K shortage, although low K will affect many tree responses.
- Return bloom appears to be especially sensitive to P deficiency, but P shortage will affect several other tree responses.