Frost Susceptibility Assessment

Frost Mitigation With Wind Machines

Paul W. Brown Extension Specialist, Biometeorology College of Agriculture & Life Sciences University of Arizona

Are We More Susceptible to Frost?

- Pecan Phenology/Budbreak
- Spring Weather Conditions/Trends
- Frost Date Trends

Sparks Pecan Budbreak Model

Winter chill accumulation followed by heat accumulation

Sparks Budbreak Model

Less Chill Means More Degree Days to Budbreak

Bud Break Estimates Arizona @ 4200'

Average = 12 April

Median = 13 April

Budbreak Estimates Arizona @ 4200'

Budbreak Estimates Arizona @ 4200'

7 of Last 10 Years: Early Estimated Budbreak

March Warming Trend

General Warming Trend Over 30 Years

March Warming Trend

General Warming Trend Over 30 Years Especially Last 10 Years

Spring Temperature Trends Warmer March Temperatures

Spring Temperature Trends Warmer March Temperatures

Spring Temperature Trends Warmer March Temperatures

Factors Leading To Warming

Warming from Greenhouse Gases

Cyclical Weather/Climate

Drought

Spring Precipitation/Drought February-April

Frost Dates

Slight, non-significant trend toward earlier last frost date

Note high variability of last frost date, especially last 28F frost

The Most Recent 30 Years

The Danger Warmer Future With Similar Frost Activity

We need a better arid regional phenology model to address this issue!

Wind Machines for Frost Protection

Types of Frost Events

Temperature Colder

Advective

- Associated With Cold Front
- Windy, Often Clear & Dry
- Colder Aloft
- Frost May Not Be Visible

- Associated With High Pressure
- Clear, Calm & Often Dry
- Warmer Aloft
- Frost Often Visible

Most Severe Frosts in Southwest Combination Events

Strong Storm System Passes

- Mid-Day
- Cold Front Displaces Warm Air
- Extracts Heat From Surface
- Limited Heat Aloft in Air

High Pressure Moves in Quickly

- Skies Clear
- Wind Dies
- Radiation Frost
- Limited Inversion

Wind Machines

Both permanent & portable models

- Large Rotating Fans
 - Typically on Tower
 - Slight Downward Angle Mix Warmer Air Aloft With Colder Surface Air
 - Increase Surface Temperature
- Powered By
 - Electricity
 - Diesel
 - Gasoline
 - LP Gas
- Require Presence of Inversion
 - Radiation Frost Events

Radiation Frost Generally Good Protection

Inversion Development

Air both heats and cools through contact with the surface. Air picks up heat from the surface during the day. Air near the surface cools more rapidly at night through contact with the cooler surface, resulting in warmer air aloft – the inversion.

Radiation Frost Generally Good Protection

Radiation Frost Generally Good Protection

Source: Rick Snyder, Univ. of California, Davis

Warming Depends on Inversion Strength

Source: Rick Snyder, Univ. of California, Davis

---InversionStrength: Difference in Temperature Between 6.5' and ~40' (Fan Height)

---MaximumWarming at 6.5' Equals 1/2 of Inversion Strength; Typically 1/3!

Inversion Assessment Clear, Cold Nights

Inversion Assessment Graham County AZ

Date	Temp (50')	Temp (5')	Inversion	Minimum
4/3/79	34F	25F	9F	21F
4/4/79	35	25	10	23
4/5/79	40	30	10	23
3/20/80	30	27	3	24
3/21/80	42	32	10	29
3/31/82	38	31	7	31
4/3/82	41	31	10	31
4/5/82	46	31	15	31
4/8/82	39	29	10	29
4/20/82	42	32	10	32

Areal Coverage

• 8-12 Acres/Machine

- Radial Impact: 375-400'
- Single Machines: 8 Acres

Depends

- Warming Required
- Inversion Strength
- Wind Drift
- Design/Height/Power
 12-15 BHP/Acre

Not Spatially Uniform

- Placement Based On...
 - Wind/Drainage Patterns
 - Topography
 - Inversions

Areal Coverage

• 8-12 Acres/Machine

- Radial Impact: 375-400'
- Single Machines: 8 Acres
- Depends
 - Warming Required
 - Inversion Strength
 - Wind Drift
 - Design/Height/Power
 - 12-15 BHP/Acre

Not Spatially Uniform

- Placement Based On...
 - Wind/Drainage Patterns
 - Topography
 - Inversions

Protection Area Shaped Like Oval With Wind Drift

Fan Rotation Required Every 4-6 Minutes

Fan Rotation Restores Heat Lost to Drainage, Radiation and Conduction into Plant Materials

Fan Rotation

Required Every 4-6 Minutes

Machine Operation

- General Starting Recommendation
 - Slightly Above Critical Temperatures
 - Foliage Below Air Temperature
 - Warming Results Quickly if Inversion Present
 - Can Be Automated
- Older Literature
 - Start Early Before Inversion Forms
 - Inversions Begin to Form Before Sunset in SW
- Run Until Temperatures Exceed Critical in Morning
 - Can Be Hour or Two After Sunrise
- Can Be Matched With Heaters/Irrigation
 - Improved Protection

Advective Frost Poor Protection

Advective Frost Poor Protection

Wind Machines Limited Value During Windy Conditions

Under windy conditions the air becomes thoroughly mixed and inversion dissipates or disappears. Inversions do not exist under advective frost conditions.

INVERSION STRENGTH & WIND

Inversion strength: difference in temperature between wind machine height & standard measurement height

Concluding Comments

- Warmer Springs Driving Earlier Budbreak
- More Vulnerable to Frost
 - If Last Frost Dates Don't Recede
- Wind Machines
 - Effective Frost Mitigation Strategy
 - Coverage: 8-12 Acres
 - Protection: 3-5F
 - Require Inversions
 - Seek Experienced Professional Help (Large Investment)
 - Siting
 - Power
 - Environmental Regulations
 - Additional Arid Region Studies Needed
 - Further Optimize Operation

